This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blin | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( ( P ( ball ` D ) R ) i^i ( P ( ball ` D ) S ) ) = ( P ( ball ` D ) if ( R <_ S , R , S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR* ) |
|
| 2 | 1 | ad4ant124 | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) /\ x e. X ) -> ( P D x ) e. RR* ) |
| 3 | simplrl | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) /\ x e. X ) -> R e. RR* ) |
|
| 4 | simplrr | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) /\ x e. X ) -> S e. RR* ) |
|
| 5 | xrltmin | |- ( ( ( P D x ) e. RR* /\ R e. RR* /\ S e. RR* ) -> ( ( P D x ) < if ( R <_ S , R , S ) <-> ( ( P D x ) < R /\ ( P D x ) < S ) ) ) |
|
| 6 | 2 3 4 5 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) /\ x e. X ) -> ( ( P D x ) < if ( R <_ S , R , S ) <-> ( ( P D x ) < R /\ ( P D x ) < S ) ) ) |
| 7 | 6 | pm5.32da | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( ( x e. X /\ ( P D x ) < if ( R <_ S , R , S ) ) <-> ( x e. X /\ ( ( P D x ) < R /\ ( P D x ) < S ) ) ) ) |
| 8 | ifcl | |- ( ( R e. RR* /\ S e. RR* ) -> if ( R <_ S , R , S ) e. RR* ) |
|
| 9 | elbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ if ( R <_ S , R , S ) e. RR* ) -> ( x e. ( P ( ball ` D ) if ( R <_ S , R , S ) ) <-> ( x e. X /\ ( P D x ) < if ( R <_ S , R , S ) ) ) ) |
|
| 10 | 9 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ if ( R <_ S , R , S ) e. RR* ) -> ( x e. ( P ( ball ` D ) if ( R <_ S , R , S ) ) <-> ( x e. X /\ ( P D x ) < if ( R <_ S , R , S ) ) ) ) |
| 11 | 8 10 | sylan2 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( x e. ( P ( ball ` D ) if ( R <_ S , R , S ) ) <-> ( x e. X /\ ( P D x ) < if ( R <_ S , R , S ) ) ) ) |
| 12 | elbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
|
| 13 | 12 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 14 | 13 | adantrr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 15 | elbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ S e. RR* ) -> ( x e. ( P ( ball ` D ) S ) <-> ( x e. X /\ ( P D x ) < S ) ) ) |
|
| 16 | 15 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ S e. RR* ) -> ( x e. ( P ( ball ` D ) S ) <-> ( x e. X /\ ( P D x ) < S ) ) ) |
| 17 | 16 | adantrl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( x e. ( P ( ball ` D ) S ) <-> ( x e. X /\ ( P D x ) < S ) ) ) |
| 18 | 14 17 | anbi12d | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( ( x e. ( P ( ball ` D ) R ) /\ x e. ( P ( ball ` D ) S ) ) <-> ( ( x e. X /\ ( P D x ) < R ) /\ ( x e. X /\ ( P D x ) < S ) ) ) ) |
| 19 | elin | |- ( x e. ( ( P ( ball ` D ) R ) i^i ( P ( ball ` D ) S ) ) <-> ( x e. ( P ( ball ` D ) R ) /\ x e. ( P ( ball ` D ) S ) ) ) |
|
| 20 | anandi | |- ( ( x e. X /\ ( ( P D x ) < R /\ ( P D x ) < S ) ) <-> ( ( x e. X /\ ( P D x ) < R ) /\ ( x e. X /\ ( P D x ) < S ) ) ) |
|
| 21 | 18 19 20 | 3bitr4g | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( x e. ( ( P ( ball ` D ) R ) i^i ( P ( ball ` D ) S ) ) <-> ( x e. X /\ ( ( P D x ) < R /\ ( P D x ) < S ) ) ) ) |
| 22 | 7 11 21 | 3bitr4rd | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( x e. ( ( P ( ball ` D ) R ) i^i ( P ( ball ` D ) S ) ) <-> x e. ( P ( ball ` D ) if ( R <_ S , R , S ) ) ) ) |
| 23 | 22 | eqrdv | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ S e. RR* ) ) -> ( ( P ( ball ` D ) R ) i^i ( P ( ball ` D ) S ) ) = ( P ( ball ` D ) if ( R <_ S , R , S ) ) ) |