This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Remove a DV condition from bj-ax12v (using core axioms only). (Contributed by BJ, 26-Dec-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-ax12 | |- A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ax12v | |- A. x ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
|
| 2 | equequ2 | |- ( y = t -> ( x = y <-> x = t ) ) |
|
| 3 | 2 | imbi1d | |- ( y = t -> ( ( x = y -> ph ) <-> ( x = t -> ph ) ) ) |
| 4 | 3 | albidv | |- ( y = t -> ( A. x ( x = y -> ph ) <-> A. x ( x = t -> ph ) ) ) |
| 5 | 4 | imbi2d | |- ( y = t -> ( ( ph -> A. x ( x = y -> ph ) ) <-> ( ph -> A. x ( x = t -> ph ) ) ) ) |
| 6 | 2 5 | imbi12d | |- ( y = t -> ( ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) <-> ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) ) |
| 7 | 6 | albidv | |- ( y = t -> ( A. x ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) <-> A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) ) |
| 8 | 1 7 | mpbii | |- ( y = t -> A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) |
| 9 | ax6ev | |- E. y y = t |
|
| 10 | 8 9 | exlimiiv | |- A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) |