This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805 . Interestingly, this law was not included inPrincipia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by NM, 8-Jan-2005) (Proof shortened by Juha Arpiainen, 19-Jan-2006) (Proof shortened by Wolf Lammen, 21-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biass | |- ( ( ( ph <-> ps ) <-> ch ) <-> ( ph <-> ( ps <-> ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.501 | |- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |
|
| 2 | 1 | bibi1d | |- ( ph -> ( ( ps <-> ch ) <-> ( ( ph <-> ps ) <-> ch ) ) ) |
| 3 | pm5.501 | |- ( ph -> ( ( ps <-> ch ) <-> ( ph <-> ( ps <-> ch ) ) ) ) |
|
| 4 | 2 3 | bitr3d | |- ( ph -> ( ( ( ph <-> ps ) <-> ch ) <-> ( ph <-> ( ps <-> ch ) ) ) ) |
| 5 | nbbn | |- ( ( -. ps <-> ch ) <-> -. ( ps <-> ch ) ) |
|
| 6 | nbn2 | |- ( -. ph -> ( -. ps <-> ( ph <-> ps ) ) ) |
|
| 7 | 6 | bibi1d | |- ( -. ph -> ( ( -. ps <-> ch ) <-> ( ( ph <-> ps ) <-> ch ) ) ) |
| 8 | 5 7 | bitr3id | |- ( -. ph -> ( -. ( ps <-> ch ) <-> ( ( ph <-> ps ) <-> ch ) ) ) |
| 9 | nbn2 | |- ( -. ph -> ( -. ( ps <-> ch ) <-> ( ph <-> ( ps <-> ch ) ) ) ) |
|
| 10 | 8 9 | bitr3d | |- ( -. ph -> ( ( ( ph <-> ps ) <-> ch ) <-> ( ph <-> ( ps <-> ch ) ) ) ) |
| 11 | 4 10 | pm2.61i | |- ( ( ( ph <-> ps ) <-> ch ) <-> ( ph <-> ( ps <-> ch ) ) ) |