This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commuted inner products have the same absolute values. (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abshicom | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) = ( abs ` ( B .ih A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his1 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) |
|
| 2 | 1 | fveq2d | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) = ( abs ` ( * ` ( B .ih A ) ) ) ) |
| 3 | hicl | |- ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) e. CC ) |
|
| 4 | 3 | ancoms | |- ( ( A e. ~H /\ B e. ~H ) -> ( B .ih A ) e. CC ) |
| 5 | 4 | abscjd | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( * ` ( B .ih A ) ) ) = ( abs ` ( B .ih A ) ) ) |
| 6 | 2 5 | eqtrd | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) = ( abs ` ( B .ih A ) ) ) |