This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A more general version of the axiom scheme of separation ax-sep , where variable z can also occur (in addition to x ) in formula ph , which can therefore be thought of as ph ( x , z ) . This version is derived from the more restrictive ax-sep with no additional set theory axioms. Note that it was also derived from ax-rep but without ax-sep as axsepgfromrep . (Contributed by NM, 10-Dec-2006) (Proof shortened by Mario Carneiro, 17-Nov-2016) Remove dependency on ax-12 and ax-13 and shorten proof. (Revised by BJ, 6-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axsepg | |- E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 | |- ( w = z -> ( x e. w <-> x e. z ) ) |
|
| 2 | 1 | anbi1d | |- ( w = z -> ( ( x e. w /\ ph ) <-> ( x e. z /\ ph ) ) ) |
| 3 | 2 | bibi2d | |- ( w = z -> ( ( x e. y <-> ( x e. w /\ ph ) ) <-> ( x e. y <-> ( x e. z /\ ph ) ) ) ) |
| 4 | 3 | albidv | |- ( w = z -> ( A. x ( x e. y <-> ( x e. w /\ ph ) ) <-> A. x ( x e. y <-> ( x e. z /\ ph ) ) ) ) |
| 5 | 4 | exbidv | |- ( w = z -> ( E. y A. x ( x e. y <-> ( x e. w /\ ph ) ) <-> E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) ) ) |
| 6 | ax-sep | |- E. y A. x ( x e. y <-> ( x e. w /\ ph ) ) |
|
| 7 | 5 6 | chvarvv | |- E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) |