This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axpr . Eliminate the antecedent of the relevant replacement instance. (Contributed by Rohan Ridenour, 10-Aug-2023) (Proof shortened by Matthew House, 18-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axprlem3 | |- E. z A. w ( w e. z <-> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep4v | |- ( A. s E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) -> E. z A. w ( w e. z <-> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) ) |
|
| 2 | ifptru | |- ( E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) <-> w = x ) ) |
|
| 3 | 2 | biimpd | |- ( E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = x ) ) |
| 4 | equeuclr | |- ( z = x -> ( w = x -> w = z ) ) |
|
| 5 | 3 4 | syl9r | |- ( z = x -> ( E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
| 6 | 5 | alrimdv | |- ( z = x -> ( E. n n e. s -> A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
| 7 | 6 | spimevw | |- ( E. n n e. s -> E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
| 8 | ifpfal | |- ( -. E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) <-> w = y ) ) |
|
| 9 | 8 | biimpd | |- ( -. E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = y ) ) |
| 10 | equeuclr | |- ( z = y -> ( w = y -> w = z ) ) |
|
| 11 | 9 10 | syl9r | |- ( z = y -> ( -. E. n n e. s -> ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
| 12 | 11 | alrimdv | |- ( z = y -> ( -. E. n n e. s -> A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) ) |
| 13 | 12 | spimevw | |- ( -. E. n n e. s -> E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) ) |
| 14 | 7 13 | pm2.61i | |- E. z A. w ( if- ( E. n n e. s , w = x , w = y ) -> w = z ) |
| 15 | 1 14 | mpg | |- E. z A. w ( w e. z <-> E. s ( s e. p /\ if- ( E. n n e. s , w = x , w = y ) ) ) |