This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nfeqf2 . This lemma is equivalent to ax13v with one distinct variable constraint removed. (Contributed by Wolf Lammen, 8-Sep-2018) Reduce axiom usage. (Revised by Wolf Lammen, 18-Oct-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax13lem2 | |- ( -. x = y -> ( E. x z = y -> z = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax13lem1 | |- ( -. x = y -> ( w = y -> A. x w = y ) ) |
|
| 2 | equeucl | |- ( z = y -> ( w = y -> z = w ) ) |
|
| 3 | 2 | eximi | |- ( E. x z = y -> E. x ( w = y -> z = w ) ) |
| 4 | 19.36v | |- ( E. x ( w = y -> z = w ) <-> ( A. x w = y -> z = w ) ) |
|
| 5 | 3 4 | sylib | |- ( E. x z = y -> ( A. x w = y -> z = w ) ) |
| 6 | 1 5 | syl9 | |- ( -. x = y -> ( E. x z = y -> ( w = y -> z = w ) ) ) |
| 7 | 6 | alrimdv | |- ( -. x = y -> ( E. x z = y -> A. w ( w = y -> z = w ) ) ) |
| 8 | equequ2 | |- ( w = y -> ( z = w <-> z = y ) ) |
|
| 9 | 8 | equsalvw | |- ( A. w ( w = y -> z = w ) <-> z = y ) |
| 10 | 7 9 | imbitrdi | |- ( -. x = y -> ( E. x z = y -> z = y ) ) |