This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Wolf Lammen, 9-Jun-2019) Remove dependency on ax-12 . (Revised by Wolf Lammen, 16-Dec-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfeqf2 | |- ( -. A. x x = y -> F/ x z = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnal | |- ( E. x -. x = y <-> -. A. x x = y ) |
|
| 2 | hbe1 | |- ( E. x z = y -> A. x E. x z = y ) |
|
| 3 | ax13lem2 | |- ( -. x = y -> ( E. x z = y -> z = y ) ) |
|
| 4 | ax13lem1 | |- ( -. x = y -> ( z = y -> A. x z = y ) ) |
|
| 5 | 3 4 | syldc | |- ( E. x z = y -> ( -. x = y -> A. x z = y ) ) |
| 6 | 2 5 | eximdh | |- ( E. x z = y -> ( E. x -. x = y -> E. x A. x z = y ) ) |
| 7 | hbe1a | |- ( E. x A. x z = y -> A. x z = y ) |
|
| 8 | 6 7 | syl6com | |- ( E. x -. x = y -> ( E. x z = y -> A. x z = y ) ) |
| 9 | 8 | nfd | |- ( E. x -. x = y -> F/ x z = y ) |
| 10 | 1 9 | sylbir | |- ( -. A. x x = y -> F/ x z = y ) |