This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of ax12inda2 , slightly more direct and not requiring ax-c16 . (Contributed by NM, 4-May-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ax12inda2.1 | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
|
| Assertion | ax12inda2ALT | |- ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12inda2.1 | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
|
| 2 | ax-1 | |- ( A. x ph -> ( x = y -> A. x ph ) ) |
|
| 3 | 2 | axc4i-o | |- ( A. x ph -> A. x ( x = y -> A. x ph ) ) |
| 4 | 3 | a1i | |- ( A. z z = x -> ( A. x ph -> A. x ( x = y -> A. x ph ) ) ) |
| 5 | biidd | |- ( A. z z = x -> ( ph <-> ph ) ) |
|
| 6 | 5 | dral1-o | |- ( A. z z = x -> ( A. z ph <-> A. x ph ) ) |
| 7 | 6 | imbi2d | |- ( A. z z = x -> ( ( x = y -> A. z ph ) <-> ( x = y -> A. x ph ) ) ) |
| 8 | 7 | dral2-o | |- ( A. z z = x -> ( A. x ( x = y -> A. z ph ) <-> A. x ( x = y -> A. x ph ) ) ) |
| 9 | 4 6 8 | 3imtr4d | |- ( A. z z = x -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) |
| 10 | 9 | aecoms-o | |- ( A. x x = z -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) |
| 11 | 10 | a1d | |- ( A. x x = z -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) |
| 12 | 11 | a1d | |- ( A. x x = z -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) |
| 13 | simplr | |- ( ( ( -. A. x x = z /\ -. A. x x = y ) /\ x = y ) -> -. A. x x = y ) |
|
| 14 | dveeq1-o | |- ( -. A. z z = x -> ( x = y -> A. z x = y ) ) |
|
| 15 | 14 | naecoms-o | |- ( -. A. x x = z -> ( x = y -> A. z x = y ) ) |
| 16 | 15 | imp | |- ( ( -. A. x x = z /\ x = y ) -> A. z x = y ) |
| 17 | 16 | adantlr | |- ( ( ( -. A. x x = z /\ -. A. x x = y ) /\ x = y ) -> A. z x = y ) |
| 18 | hbnae-o | |- ( -. A. x x = y -> A. z -. A. x x = y ) |
|
| 19 | hba1-o | |- ( A. z x = y -> A. z A. z x = y ) |
|
| 20 | 18 19 | hban | |- ( ( -. A. x x = y /\ A. z x = y ) -> A. z ( -. A. x x = y /\ A. z x = y ) ) |
| 21 | ax-c5 | |- ( A. z x = y -> x = y ) |
|
| 22 | 1 | imp | |- ( ( -. A. x x = y /\ x = y ) -> ( ph -> A. x ( x = y -> ph ) ) ) |
| 23 | 21 22 | sylan2 | |- ( ( -. A. x x = y /\ A. z x = y ) -> ( ph -> A. x ( x = y -> ph ) ) ) |
| 24 | 20 23 | alimdh | |- ( ( -. A. x x = y /\ A. z x = y ) -> ( A. z ph -> A. z A. x ( x = y -> ph ) ) ) |
| 25 | 13 17 24 | syl2anc | |- ( ( ( -. A. x x = z /\ -. A. x x = y ) /\ x = y ) -> ( A. z ph -> A. z A. x ( x = y -> ph ) ) ) |
| 26 | ax-11 | |- ( A. z A. x ( x = y -> ph ) -> A. x A. z ( x = y -> ph ) ) |
|
| 27 | hbnae-o | |- ( -. A. x x = z -> A. x -. A. x x = z ) |
|
| 28 | hbnae-o | |- ( -. A. x x = z -> A. z -. A. x x = z ) |
|
| 29 | 28 15 | nf5dh | |- ( -. A. x x = z -> F/ z x = y ) |
| 30 | 19.21t | |- ( F/ z x = y -> ( A. z ( x = y -> ph ) <-> ( x = y -> A. z ph ) ) ) |
|
| 31 | 29 30 | syl | |- ( -. A. x x = z -> ( A. z ( x = y -> ph ) <-> ( x = y -> A. z ph ) ) ) |
| 32 | 27 31 | albidh | |- ( -. A. x x = z -> ( A. x A. z ( x = y -> ph ) <-> A. x ( x = y -> A. z ph ) ) ) |
| 33 | 26 32 | imbitrid | |- ( -. A. x x = z -> ( A. z A. x ( x = y -> ph ) -> A. x ( x = y -> A. z ph ) ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( -. A. x x = z /\ -. A. x x = y ) /\ x = y ) -> ( A. z A. x ( x = y -> ph ) -> A. x ( x = y -> A. z ph ) ) ) |
| 35 | 25 34 | syld | |- ( ( ( -. A. x x = z /\ -. A. x x = y ) /\ x = y ) -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) |
| 36 | 35 | exp31 | |- ( -. A. x x = z -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) |
| 37 | 12 36 | pm2.61i | |- ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) |