This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Real and complex number postulates restated as axioms
ax-cnre
Metamath Proof Explorer
Description: A complex number can be expressed in terms of two reals. Definition
10-1.1(v) of Gleason p. 130. Axiom 17 of 22 for real and complex
numbers, justified by Theorem axcnre . For naming consistency, use
cnre for new proofs. (New usage is discouraged.) (Contributed by NM , 9-May-1999)
Ref
Expression
Assertion
ax-cnre
⊢ A ∈ ℂ → ∃ x ∈ ℝ ∃ y ∈ ℝ A = x + i ⁢ y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
class A
1
cc
class ℂ
2
0 1
wcel
wff A ∈ ℂ
3
vx
setvar x
4
cr
class ℝ
5
vy
setvar y
6
3
cv
setvar x
7
caddc
class +
8
ci
class i
9
cmul
class ×
10
5
cv
setvar y
11
8 10 9
co
class i ⁢ y
12
6 11 7
co
class x + i ⁢ y
13
0 12
wceq
wff A = x + i ⁢ y
14
13 5 4
wrex
wff ∃ y ∈ ℝ A = x + i ⁢ y
15
14 3 4
wrex
wff ∃ x ∈ ℝ ∃ y ∈ ℝ A = x + i ⁢ y
16
2 15
wi
wff A ∈ ℂ → ∃ x ∈ ℝ ∃ y ∈ ℝ A = x + i ⁢ y