This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between tangent and arctangent. (Contributed by Mario Carneiro, 5-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atantanb | |- ( ( A e. dom arctan /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( arctan ` A ) = B <-> ( tan ` B ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tanatan | |- ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = A ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. dom arctan /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` ( arctan ` A ) ) = A ) |
| 3 | fveqeq2 | |- ( ( arctan ` A ) = B -> ( ( tan ` ( arctan ` A ) ) = A <-> ( tan ` B ) = A ) ) |
|
| 4 | 2 3 | syl5ibcom | |- ( ( A e. dom arctan /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( arctan ` A ) = B -> ( tan ` B ) = A ) ) |
| 5 | atantan | |- ( ( B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arctan ` ( tan ` B ) ) = B ) |
|
| 6 | 5 | 3adant1 | |- ( ( A e. dom arctan /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arctan ` ( tan ` B ) ) = B ) |
| 7 | fveqeq2 | |- ( ( tan ` B ) = A -> ( ( arctan ` ( tan ` B ) ) = B <-> ( arctan ` A ) = B ) ) |
|
| 8 | 6 7 | syl5ibcom | |- ( ( A e. dom arctan /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( tan ` B ) = A -> ( arctan ` A ) = B ) ) |
| 9 | 4 8 | impbid | |- ( ( A e. dom arctan /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( arctan ` A ) = B <-> ( tan ` B ) = A ) ) |