This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "distinctor elimination" lemma with no disjoint variable conditions on variables in the consequent, proved without using ax-c16 . Version of aev using ax-c11 . (Contributed by NM, 8-Nov-2006) (Proof shortened by Andrew Salmon, 21-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aev-o | |- ( A. x x = y -> A. z w = v ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae-o | |- ( A. x x = y -> A. z A. x x = y ) |
|
| 2 | hbae-o | |- ( A. x x = y -> A. t A. x x = y ) |
|
| 3 | ax7 | |- ( x = t -> ( x = y -> t = y ) ) |
|
| 4 | 3 | spimvw | |- ( A. x x = y -> t = y ) |
| 5 | 2 4 | alrimih | |- ( A. x x = y -> A. t t = y ) |
| 6 | ax7 | |- ( y = u -> ( y = t -> u = t ) ) |
|
| 7 | equcomi | |- ( u = t -> t = u ) |
|
| 8 | 6 7 | syl6 | |- ( y = u -> ( y = t -> t = u ) ) |
| 9 | 8 | spimvw | |- ( A. y y = t -> t = u ) |
| 10 | 9 | aecoms-o | |- ( A. t t = y -> t = u ) |
| 11 | 10 | axc4i-o | |- ( A. t t = y -> A. t t = u ) |
| 12 | hbae-o | |- ( A. t t = u -> A. v A. t t = u ) |
|
| 13 | ax7 | |- ( t = v -> ( t = u -> v = u ) ) |
|
| 14 | 13 | spimvw | |- ( A. t t = u -> v = u ) |
| 15 | 12 14 | alrimih | |- ( A. t t = u -> A. v v = u ) |
| 16 | aecom-o | |- ( A. v v = u -> A. u u = v ) |
|
| 17 | 11 15 16 | 3syl | |- ( A. t t = y -> A. u u = v ) |
| 18 | ax7 | |- ( u = w -> ( u = v -> w = v ) ) |
|
| 19 | 18 | spimvw | |- ( A. u u = v -> w = v ) |
| 20 | 5 17 19 | 3syl | |- ( A. x x = y -> w = v ) |
| 21 | 1 20 | alrimih | |- ( A. x x = y -> A. z w = v ) |