This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a sum and a difference. (Contributed by AV, 5-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmulsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐴 ∈ ℂ ) | |
| 2 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) | |
| 3 | 1 2 | addcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 4 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ ) | |
| 5 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐷 ∈ ℂ ) | |
| 6 | 3 4 5 | subdid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 + 𝐵 ) · 𝐶 ) − ( ( 𝐴 + 𝐵 ) · 𝐷 ) ) ) |
| 7 | 1 2 4 | adddird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) ) |
| 8 | 1 2 5 | adddird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · 𝐷 ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) |
| 9 | 7 8 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) · 𝐶 ) − ( ( 𝐴 + 𝐵 ) · 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) − ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) ) |