This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcompq | |- ( A +pQ B ) = ( B +pQ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcompi | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` B ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) |
|
| 2 | mulcompi | |- ( ( 2nd ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` B ) .N ( 2nd ` A ) ) |
|
| 3 | 1 2 | opeq12i | |- <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. = <. ( ( ( 1st ` B ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` A ) ) >. |
| 4 | addpipq2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A +pQ B ) = <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
|
| 5 | addpipq2 | |- ( ( B e. ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> ( B +pQ A ) = <. ( ( ( 1st ` B ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` A ) ) >. ) |
|
| 6 | 5 | ancoms | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( B +pQ A ) = <. ( ( ( 1st ` B ) .N ( 2nd ` A ) ) +N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` A ) ) >. ) |
| 7 | 3 4 6 | 3eqtr4a | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A +pQ B ) = ( B +pQ A ) ) |
| 8 | addpqf | |- +pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) |
|
| 9 | 8 | fdmi | |- dom +pQ = ( ( N. X. N. ) X. ( N. X. N. ) ) |
| 10 | 9 | ndmovcom | |- ( -. ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A +pQ B ) = ( B +pQ A ) ) |
| 11 | 7 10 | pm2.61i | |- ( A +pQ B ) = ( B +pQ A ) |