This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isabl.1 | |- X = ran G |
|
| Assertion | isablo | |- ( G e. AbelOp <-> ( G e. GrpOp /\ A. x e. X A. y e. X ( x G y ) = ( y G x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl.1 | |- X = ran G |
|
| 2 | rneq | |- ( g = G -> ran g = ran G ) |
|
| 3 | 2 1 | eqtr4di | |- ( g = G -> ran g = X ) |
| 4 | raleq | |- ( ran g = X -> ( A. y e. ran g ( x g y ) = ( y g x ) <-> A. y e. X ( x g y ) = ( y g x ) ) ) |
|
| 5 | 4 | raleqbi1dv | |- ( ran g = X -> ( A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) <-> A. x e. X A. y e. X ( x g y ) = ( y g x ) ) ) |
| 6 | 3 5 | syl | |- ( g = G -> ( A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) <-> A. x e. X A. y e. X ( x g y ) = ( y g x ) ) ) |
| 7 | oveq | |- ( g = G -> ( x g y ) = ( x G y ) ) |
|
| 8 | oveq | |- ( g = G -> ( y g x ) = ( y G x ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( g = G -> ( ( x g y ) = ( y g x ) <-> ( x G y ) = ( y G x ) ) ) |
| 10 | 9 | 2ralbidv | |- ( g = G -> ( A. x e. X A. y e. X ( x g y ) = ( y g x ) <-> A. x e. X A. y e. X ( x G y ) = ( y G x ) ) ) |
| 11 | 6 10 | bitrd | |- ( g = G -> ( A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) <-> A. x e. X A. y e. X ( x G y ) = ( y G x ) ) ) |
| 12 | df-ablo | |- AbelOp = { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) } |
|
| 13 | 11 12 | elrab2 | |- ( G e. AbelOp <-> ( G e. GrpOp /\ A. x e. X A. y e. X ( x G y ) = ( y G x ) ) ) |