This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 5 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
||
| 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
||
| Assertion | 2wlkdlem5 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
|
| 4 | 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
|
| 5 | 1 2 3 | 2wlkdlem3 | |- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
| 6 | simp1 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) = A ) |
|
| 7 | simp2 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 1 ) = B ) |
|
| 8 | 6 7 | neeq12d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
| 9 | simp3 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) |
|
| 10 | 7 9 | neeq12d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 1 ) =/= ( P ` 2 ) <-> B =/= C ) ) |
| 11 | 8 10 | anbi12d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) <-> ( A =/= B /\ B =/= C ) ) ) |
| 12 | 11 | bicomd | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( A =/= B /\ B =/= C ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
| 13 | 5 12 | syl | |- ( ph -> ( ( A =/= B /\ B =/= C ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
| 14 | 4 13 | mpbid | |- ( ph -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 15 | 1 2 | 2wlkdlem2 | |- ( 0 ..^ ( # ` F ) ) = { 0 , 1 } |
| 16 | 15 | raleqi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> A. k e. { 0 , 1 } ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 17 | c0ex | |- 0 e. _V |
|
| 18 | 1ex | |- 1 e. _V |
|
| 19 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 20 | fv0p1e1 | |- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
|
| 21 | 19 20 | neeq12d | |- ( k = 0 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 22 | fveq2 | |- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
|
| 23 | oveq1 | |- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
|
| 24 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 25 | 23 24 | eqtrdi | |- ( k = 1 -> ( k + 1 ) = 2 ) |
| 26 | 25 | fveq2d | |- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
| 27 | 22 26 | neeq12d | |- ( k = 1 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 28 | 17 18 21 27 | ralpr | |- ( A. k e. { 0 , 1 } ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 29 | 16 28 | bitri | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 30 | 14 29 | sylibr | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |