This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
||
| Assertion | 2wlkdlem4 | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
|
| 4 | 1 2 3 | 2wlkdlem3 | |- ( ph -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) ) |
| 5 | simp1 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 0 ) = A ) |
|
| 6 | 5 | eleq1d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 0 ) e. V <-> A e. V ) ) |
| 7 | simp2 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 1 ) = B ) |
|
| 8 | 7 | eleq1d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 1 ) e. V <-> B e. V ) ) |
| 9 | simp3 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) |
|
| 10 | 9 | eleq1d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( P ` 2 ) e. V <-> C e. V ) ) |
| 11 | 6 8 10 | 3anbi123d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) <-> ( A e. V /\ B e. V /\ C e. V ) ) ) |
| 12 | 11 | bicomd | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) ) |
| 13 | 4 12 | syl | |- ( ph -> ( ( A e. V /\ B e. V /\ C e. V ) <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) ) |
| 14 | 3 13 | mpbid | |- ( ph -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) |
| 15 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J K "> ) |
| 16 | s2len | |- ( # ` <" J K "> ) = 2 |
|
| 17 | 15 16 | eqtri | |- ( # ` F ) = 2 |
| 18 | 17 | oveq2i | |- ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) |
| 19 | fz0tp | |- ( 0 ... 2 ) = { 0 , 1 , 2 } |
|
| 20 | 18 19 | eqtri | |- ( 0 ... ( # ` F ) ) = { 0 , 1 , 2 } |
| 21 | 20 | raleqi | |- ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> A. k e. { 0 , 1 , 2 } ( P ` k ) e. V ) |
| 22 | c0ex | |- 0 e. _V |
|
| 23 | 1ex | |- 1 e. _V |
|
| 24 | 2ex | |- 2 e. _V |
|
| 25 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 26 | 25 | eleq1d | |- ( k = 0 -> ( ( P ` k ) e. V <-> ( P ` 0 ) e. V ) ) |
| 27 | fveq2 | |- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
|
| 28 | 27 | eleq1d | |- ( k = 1 -> ( ( P ` k ) e. V <-> ( P ` 1 ) e. V ) ) |
| 29 | fveq2 | |- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
|
| 30 | 29 | eleq1d | |- ( k = 2 -> ( ( P ` k ) e. V <-> ( P ` 2 ) e. V ) ) |
| 31 | 22 23 24 26 28 30 | raltp | |- ( A. k e. { 0 , 1 , 2 } ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) |
| 32 | 21 31 | bitri | |- ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ ( P ` 2 ) e. V ) ) |
| 33 | 14 32 | sylibr | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |