This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent expression for double existence. Usage of this theorem is discouraged because it depends on ax-13 . For a version requiring more disjoint variables, but fewer axioms, see 2sb8ef . (Contributed by Wolf Lammen, 2-Nov-2019) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sb8e | |- ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ w ph |
|
| 2 | 1 | sb8e | |- ( E. y ph <-> E. w [ w / y ] ph ) |
| 3 | 2 | exbii | |- ( E. x E. y ph <-> E. x E. w [ w / y ] ph ) |
| 4 | excom | |- ( E. x E. w [ w / y ] ph <-> E. w E. x [ w / y ] ph ) |
|
| 5 | 3 4 | bitri | |- ( E. x E. y ph <-> E. w E. x [ w / y ] ph ) |
| 6 | nfv | |- F/ z ph |
|
| 7 | 6 | nfsb | |- F/ z [ w / y ] ph |
| 8 | 7 | sb8e | |- ( E. x [ w / y ] ph <-> E. z [ z / x ] [ w / y ] ph ) |
| 9 | 8 | exbii | |- ( E. w E. x [ w / y ] ph <-> E. w E. z [ z / x ] [ w / y ] ph ) |
| 10 | excom | |- ( E. w E. z [ z / x ] [ w / y ] ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |
|
| 11 | 5 9 10 | 3bitri | |- ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |