This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2resupmax | |- ( ( A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( A <_ B , B , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | |- < Or RR |
|
| 2 | suppr | |- ( ( < Or RR /\ A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( B < A , A , B ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( B < A , A , B ) ) |
| 4 | ifnot | |- if ( -. B < A , B , A ) = if ( B < A , A , B ) |
|
| 5 | lenlt | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
|
| 6 | 5 | bicomd | |- ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> A <_ B ) ) |
| 7 | 6 | ifbid | |- ( ( A e. RR /\ B e. RR ) -> if ( -. B < A , B , A ) = if ( A <_ B , B , A ) ) |
| 8 | 4 7 | eqtr3id | |- ( ( A e. RR /\ B e. RR ) -> if ( B < A , A , B ) = if ( A <_ B , B , A ) ) |
| 9 | 3 8 | eqtrd | |- ( ( A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( A <_ B , B , A ) ) |