This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2resupmax | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → sup ( { 𝐴 , 𝐵 } , ℝ , < ) = if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | ⊢ < Or ℝ | |
| 2 | suppr | ⊢ ( ( < Or ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → sup ( { 𝐴 , 𝐵 } , ℝ , < ) = if ( 𝐵 < 𝐴 , 𝐴 , 𝐵 ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → sup ( { 𝐴 , 𝐵 } , ℝ , < ) = if ( 𝐵 < 𝐴 , 𝐴 , 𝐵 ) ) |
| 4 | ifnot | ⊢ if ( ¬ 𝐵 < 𝐴 , 𝐵 , 𝐴 ) = if ( 𝐵 < 𝐴 , 𝐴 , 𝐵 ) | |
| 5 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 6 | 5 | bicomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 ↔ 𝐴 ≤ 𝐵 ) ) |
| 7 | 6 | ifbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ¬ 𝐵 < 𝐴 , 𝐵 , 𝐴 ) = if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
| 8 | 4 7 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐵 < 𝐴 , 𝐴 , 𝐵 ) = if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
| 9 | 3 8 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → sup ( { 𝐴 , 𝐵 } , ℝ , < ) = if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |