This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: We can always find values matching x and y , as long as they are represented by distinct variables. This theorem merges two ax6e instances E. z z = x and E. w w = y into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Wolf Lammen, 27-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ax6elem | |- ( -. A. w w = z -> E. z E. w ( z = x /\ w = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e | |- E. z z = x |
|
| 2 | nfnae | |- F/ z -. A. w w = z |
|
| 3 | nfnae | |- F/ z -. A. w w = x |
|
| 4 | 2 3 | nfan | |- F/ z ( -. A. w w = z /\ -. A. w w = x ) |
| 5 | nfeqf | |- ( ( -. A. w w = z /\ -. A. w w = x ) -> F/ w z = x ) |
|
| 6 | pm3.21 | |- ( w = y -> ( z = x -> ( z = x /\ w = y ) ) ) |
|
| 7 | 5 6 | spimed | |- ( ( -. A. w w = z /\ -. A. w w = x ) -> ( z = x -> E. w ( z = x /\ w = y ) ) ) |
| 8 | 4 7 | eximd | |- ( ( -. A. w w = z /\ -. A. w w = x ) -> ( E. z z = x -> E. z E. w ( z = x /\ w = y ) ) ) |
| 9 | 1 8 | mpi | |- ( ( -. A. w w = z /\ -. A. w w = x ) -> E. z E. w ( z = x /\ w = y ) ) |
| 10 | 9 | ex | |- ( -. A. w w = z -> ( -. A. w w = x -> E. z E. w ( z = x /\ w = y ) ) ) |
| 11 | ax6e | |- E. z z = y |
|
| 12 | nfae | |- F/ z A. w w = x |
|
| 13 | equvini | |- ( z = y -> E. w ( z = w /\ w = y ) ) |
|
| 14 | equtrr | |- ( w = x -> ( z = w -> z = x ) ) |
|
| 15 | 14 | anim1d | |- ( w = x -> ( ( z = w /\ w = y ) -> ( z = x /\ w = y ) ) ) |
| 16 | 15 | aleximi | |- ( A. w w = x -> ( E. w ( z = w /\ w = y ) -> E. w ( z = x /\ w = y ) ) ) |
| 17 | 13 16 | syl5 | |- ( A. w w = x -> ( z = y -> E. w ( z = x /\ w = y ) ) ) |
| 18 | 12 17 | eximd | |- ( A. w w = x -> ( E. z z = y -> E. z E. w ( z = x /\ w = y ) ) ) |
| 19 | 11 18 | mpi | |- ( A. w w = x -> E. z E. w ( z = x /\ w = y ) ) |
| 20 | 10 19 | pm2.61d2 | |- ( -. A. w w = z -> E. z E. w ( z = x /\ w = y ) ) |