This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of Monk1 p. 52. (Contributed by NM, 18-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1stval2 | |- ( A e. ( _V X. _V ) -> ( 1st ` A ) = |^| |^| A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | op1st | |- ( 1st ` <. x , y >. ) = x |
| 5 | 2 3 | op1stb | |- |^| |^| <. x , y >. = x |
| 6 | 4 5 | eqtr4i | |- ( 1st ` <. x , y >. ) = |^| |^| <. x , y >. |
| 7 | fveq2 | |- ( A = <. x , y >. -> ( 1st ` A ) = ( 1st ` <. x , y >. ) ) |
|
| 8 | inteq | |- ( A = <. x , y >. -> |^| A = |^| <. x , y >. ) |
|
| 9 | 8 | inteqd | |- ( A = <. x , y >. -> |^| |^| A = |^| |^| <. x , y >. ) |
| 10 | 6 7 9 | 3eqtr4a | |- ( A = <. x , y >. -> ( 1st ` A ) = |^| |^| A ) |
| 11 | 10 | exlimivv | |- ( E. x E. y A = <. x , y >. -> ( 1st ` A ) = |^| |^| A ) |
| 12 | 1 11 | sylbi | |- ( A e. ( _V X. _V ) -> ( 1st ` A ) = |^| |^| A ) |