This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of Monk1 p. 52. (Contributed by NM, 18-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1stval2 | ⊢ ( 𝐴 ∈ ( V × V ) → ( 1st ‘ 𝐴 ) = ∩ ∩ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv | ⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | op1st | ⊢ ( 1st ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑥 |
| 5 | 2 3 | op1stb | ⊢ ∩ ∩ 〈 𝑥 , 𝑦 〉 = 𝑥 |
| 6 | 4 5 | eqtr4i | ⊢ ( 1st ‘ 〈 𝑥 , 𝑦 〉 ) = ∩ ∩ 〈 𝑥 , 𝑦 〉 |
| 7 | fveq2 | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝐴 ) = ( 1st ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 8 | inteq | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ∩ 𝐴 = ∩ 〈 𝑥 , 𝑦 〉 ) | |
| 9 | 8 | inteqd | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ∩ ∩ 𝐴 = ∩ ∩ 〈 𝑥 , 𝑦 〉 ) |
| 10 | 6 7 9 | 3eqtr4a | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝐴 ) = ∩ ∩ 𝐴 ) |
| 11 | 10 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝐴 ) = ∩ ∩ 𝐴 ) |
| 12 | 1 11 | sylbi | ⊢ ( 𝐴 ∈ ( V × V ) → ( 1st ‘ 𝐴 ) = ∩ ∩ 𝐴 ) |