This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of Monk1 p. 52. (Contributed by NM, 18-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndval2 | |- ( A e. ( _V X. _V ) -> ( 2nd ` A ) = |^| |^| |^| `' { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | op2nd | |- ( 2nd ` <. x , y >. ) = y |
| 5 | 2 3 | op2ndb | |- |^| |^| |^| `' { <. x , y >. } = y |
| 6 | 4 5 | eqtr4i | |- ( 2nd ` <. x , y >. ) = |^| |^| |^| `' { <. x , y >. } |
| 7 | fveq2 | |- ( A = <. x , y >. -> ( 2nd ` A ) = ( 2nd ` <. x , y >. ) ) |
|
| 8 | sneq | |- ( A = <. x , y >. -> { A } = { <. x , y >. } ) |
|
| 9 | 8 | cnveqd | |- ( A = <. x , y >. -> `' { A } = `' { <. x , y >. } ) |
| 10 | 9 | inteqd | |- ( A = <. x , y >. -> |^| `' { A } = |^| `' { <. x , y >. } ) |
| 11 | 10 | inteqd | |- ( A = <. x , y >. -> |^| |^| `' { A } = |^| |^| `' { <. x , y >. } ) |
| 12 | 11 | inteqd | |- ( A = <. x , y >. -> |^| |^| |^| `' { A } = |^| |^| |^| `' { <. x , y >. } ) |
| 13 | 6 7 12 | 3eqtr4a | |- ( A = <. x , y >. -> ( 2nd ` A ) = |^| |^| |^| `' { A } ) |
| 14 | 13 | exlimivv | |- ( E. x E. y A = <. x , y >. -> ( 2nd ` A ) = |^| |^| |^| `' { A } ) |
| 15 | 1 14 | sylbi | |- ( A e. ( _V X. _V ) -> ( 2nd ` A ) = |^| |^| |^| `' { A } ) |