This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The antecedent provides a condition implying the converse of 19.40 . This is to 19.40 what 19.33b is to 19.33 . (Contributed by BJ, 6-May-2019) (Proof shortened by Wolf Lammen, 13-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.40b | |- ( ( A. x ph \/ A. x ps ) -> ( ( E. x ph /\ E. x ps ) <-> E. x ( ph /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 | |- ( ps -> ( ph -> ( ph /\ ps ) ) ) |
|
| 2 | 1 | aleximi | |- ( A. x ps -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |
| 3 | pm3.2 | |- ( ph -> ( ps -> ( ph /\ ps ) ) ) |
|
| 4 | 3 | aleximi | |- ( A. x ph -> ( E. x ps -> E. x ( ph /\ ps ) ) ) |
| 5 | 2 4 | jaoa | |- ( ( A. x ps \/ A. x ph ) -> ( ( E. x ph /\ E. x ps ) -> E. x ( ph /\ ps ) ) ) |
| 6 | 5 | orcoms | |- ( ( A. x ph \/ A. x ps ) -> ( ( E. x ph /\ E. x ps ) -> E. x ( ph /\ ps ) ) ) |
| 7 | 19.40 | |- ( E. x ( ph /\ ps ) -> ( E. x ph /\ E. x ps ) ) |
|
| 8 | 6 7 | impbid1 | |- ( ( A. x ph \/ A. x ps ) -> ( ( E. x ph /\ E. x ps ) <-> E. x ( ph /\ ps ) ) ) |