This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
19.40b
Metamath Proof Explorer
Description: The antecedent provides a condition implying the converse of 19.40 .
This is to 19.40 what 19.33b is to 19.33 . (Contributed by BJ , 6-May-2019) (Proof shortened by Wolf Lammen , 13-Nov-2020)
Ref
Expression
Assertion
19.40b
⊢ ∀ x φ ∨ ∀ x ψ → ∃ x φ ∧ ∃ x ψ ↔ ∃ x φ ∧ ψ
Proof
Step
Hyp
Ref
Expression
1
pm3.21
⊢ ψ → φ → φ ∧ ψ
2
1
aleximi
⊢ ∀ x ψ → ∃ x φ → ∃ x φ ∧ ψ
3
pm3.2
⊢ φ → ψ → φ ∧ ψ
4
3
aleximi
⊢ ∀ x φ → ∃ x ψ → ∃ x φ ∧ ψ
5
2 4
jaoa
⊢ ∀ x ψ ∨ ∀ x φ → ∃ x φ ∧ ∃ x ψ → ∃ x φ ∧ ψ
6
5
orcoms
⊢ ∀ x φ ∨ ∀ x ψ → ∃ x φ ∧ ∃ x ψ → ∃ x φ ∧ ψ
7
19.40
⊢ ∃ x φ ∧ ψ → ∃ x φ ∧ ∃ x ψ
8
6 7
impbid1
⊢ ∀ x φ ∨ ∀ x ψ → ∃ x φ ∧ ∃ x ψ ↔ ∃ x φ ∧ ψ