This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any category C , the empty set is a subcategory subset of C . (Contributed by AV, 23-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0ssc | |- ( C e. Cat -> (/) C_cat ( Homf ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ ( Base ` C ) |
|
| 2 | 1 | a1i | |- ( C e. Cat -> (/) C_ ( Base ` C ) ) |
| 3 | ral0 | |- A. x e. (/) A. y e. (/) ( x (/) y ) C_ ( x ( Homf ` C ) y ) |
|
| 4 | 3 | a1i | |- ( C e. Cat -> A. x e. (/) A. y e. (/) ( x (/) y ) C_ ( x ( Homf ` C ) y ) ) |
| 5 | f0 | |- (/) : (/) --> (/) |
|
| 6 | ffn | |- ( (/) : (/) --> (/) -> (/) Fn (/) ) |
|
| 7 | 5 6 | ax-mp | |- (/) Fn (/) |
| 8 | xp0 | |- ( (/) X. (/) ) = (/) |
|
| 9 | 8 | fneq2i | |- ( (/) Fn ( (/) X. (/) ) <-> (/) Fn (/) ) |
| 10 | 7 9 | mpbir | |- (/) Fn ( (/) X. (/) ) |
| 11 | 10 | a1i | |- ( C e. Cat -> (/) Fn ( (/) X. (/) ) ) |
| 12 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 13 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 14 | 12 13 | homffn | |- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 15 | 14 | a1i | |- ( C e. Cat -> ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 16 | fvexd | |- ( C e. Cat -> ( Base ` C ) e. _V ) |
|
| 17 | 11 15 16 | isssc | |- ( C e. Cat -> ( (/) C_cat ( Homf ` C ) <-> ( (/) C_ ( Base ` C ) /\ A. x e. (/) A. y e. (/) ( x (/) y ) C_ ( x ( Homf ` C ) y ) ) ) ) |
| 18 | 2 4 17 | mpbir2and | |- ( C e. Cat -> (/) C_cat ( Homf ` C ) ) |