This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0clwlk.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0clwlkv | |- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> F ( ClWalks ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0clwlk.v | |- V = ( Vtx ` G ) |
|
| 2 | fz0sn | |- ( 0 ... 0 ) = { 0 } |
|
| 3 | 2 | eqcomi | |- { 0 } = ( 0 ... 0 ) |
| 4 | 3 | feq2i | |- ( P : { 0 } --> { X } <-> P : ( 0 ... 0 ) --> { X } ) |
| 5 | 4 | biimpi | |- ( P : { 0 } --> { X } -> P : ( 0 ... 0 ) --> { X } ) |
| 6 | 5 | 3ad2ant3 | |- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> P : ( 0 ... 0 ) --> { X } ) |
| 7 | snssi | |- ( X e. V -> { X } C_ V ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> { X } C_ V ) |
| 9 | 6 8 | fssd | |- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> P : ( 0 ... 0 ) --> V ) |
| 10 | breq1 | |- ( F = (/) -> ( F ( ClWalks ` G ) P <-> (/) ( ClWalks ` G ) P ) ) |
|
| 11 | 10 | 3ad2ant2 | |- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( F ( ClWalks ` G ) P <-> (/) ( ClWalks ` G ) P ) ) |
| 12 | 1 | 1vgrex | |- ( X e. V -> G e. _V ) |
| 13 | 1 | 0clwlk | |- ( G e. _V -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 14 | 12 13 | syl | |- ( X e. V -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 16 | 11 15 | bitrd | |- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( F ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 17 | 9 16 | mpbird | |- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> F ( ClWalks ` G ) P ) |