This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0clwlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0clwlkv | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃 : { 0 } ⟶ { 𝑋 } ) → 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0clwlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | fz0sn | ⊢ ( 0 ... 0 ) = { 0 } | |
| 3 | 2 | eqcomi | ⊢ { 0 } = ( 0 ... 0 ) |
| 4 | 3 | feq2i | ⊢ ( 𝑃 : { 0 } ⟶ { 𝑋 } ↔ 𝑃 : ( 0 ... 0 ) ⟶ { 𝑋 } ) |
| 5 | 4 | biimpi | ⊢ ( 𝑃 : { 0 } ⟶ { 𝑋 } → 𝑃 : ( 0 ... 0 ) ⟶ { 𝑋 } ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃 : { 0 } ⟶ { 𝑋 } ) → 𝑃 : ( 0 ... 0 ) ⟶ { 𝑋 } ) |
| 7 | snssi | ⊢ ( 𝑋 ∈ 𝑉 → { 𝑋 } ⊆ 𝑉 ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃 : { 0 } ⟶ { 𝑋 } ) → { 𝑋 } ⊆ 𝑉 ) |
| 9 | 6 8 | fssd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃 : { 0 } ⟶ { 𝑋 } ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) |
| 10 | breq1 | ⊢ ( 𝐹 = ∅ → ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ↔ ∅ ( ClWalks ‘ 𝐺 ) 𝑃 ) ) | |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃 : { 0 } ⟶ { 𝑋 } ) → ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ↔ ∅ ( ClWalks ‘ 𝐺 ) 𝑃 ) ) |
| 12 | 1 | 1vgrex | ⊢ ( 𝑋 ∈ 𝑉 → 𝐺 ∈ V ) |
| 13 | 1 | 0clwlk | ⊢ ( 𝐺 ∈ V → ( ∅ ( ClWalks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 14 | 12 13 | syl | ⊢ ( 𝑋 ∈ 𝑉 → ( ∅ ( ClWalks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃 : { 0 } ⟶ { 𝑋 } ) → ( ∅ ( ClWalks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 16 | 11 15 | bitrd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃 : { 0 } ⟶ { 𝑋 } ) → ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 17 | 9 16 | mpbird | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃 : { 0 } ⟶ { 𝑋 } ) → 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ) |