This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpcan2 | ⊢ ( 𝐶 ≠ ∅ → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp11 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐶 ) ) ) | |
| 2 | eqid | ⊢ 𝐶 = 𝐶 | |
| 3 | 2 | biantru | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐶 ) ) |
| 4 | 1 3 | bitr4di | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 5 | nne | ⊢ ( ¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅ ) | |
| 6 | simpl | ⊢ ( ( 𝐴 = ∅ ∧ 𝐶 ≠ ∅ ) → 𝐴 = ∅ ) | |
| 7 | xpeq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐶 ) = ( ∅ × 𝐶 ) ) | |
| 8 | 0xp | ⊢ ( ∅ × 𝐶 ) = ∅ | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐶 ) = ∅ ) |
| 10 | 9 | eqeq1d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ ∅ = ( 𝐵 × 𝐶 ) ) ) |
| 11 | eqcom | ⊢ ( ∅ = ( 𝐵 × 𝐶 ) ↔ ( 𝐵 × 𝐶 ) = ∅ ) | |
| 12 | 10 11 | bitrdi | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ ( 𝐵 × 𝐶 ) = ∅ ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 = ∅ ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ ( 𝐵 × 𝐶 ) = ∅ ) ) |
| 14 | df-ne | ⊢ ( 𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅ ) | |
| 15 | xpeq0 | ⊢ ( ( 𝐵 × 𝐶 ) = ∅ ↔ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) | |
| 16 | orel2 | ⊢ ( ¬ 𝐶 = ∅ → ( ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) → 𝐵 = ∅ ) ) | |
| 17 | 15 16 | biimtrid | ⊢ ( ¬ 𝐶 = ∅ → ( ( 𝐵 × 𝐶 ) = ∅ → 𝐵 = ∅ ) ) |
| 18 | 14 17 | sylbi | ⊢ ( 𝐶 ≠ ∅ → ( ( 𝐵 × 𝐶 ) = ∅ → 𝐵 = ∅ ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 = ∅ ∧ 𝐶 ≠ ∅ ) → ( ( 𝐵 × 𝐶 ) = ∅ → 𝐵 = ∅ ) ) |
| 20 | 13 19 | sylbid | ⊢ ( ( 𝐴 = ∅ ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) → 𝐵 = ∅ ) ) |
| 21 | eqtr3 | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → 𝐴 = 𝐵 ) | |
| 22 | 6 20 21 | syl6an | ⊢ ( ( 𝐴 = ∅ ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) → 𝐴 = 𝐵 ) ) |
| 23 | xpeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ) | |
| 24 | 22 23 | impbid1 | ⊢ ( ( 𝐴 = ∅ ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 25 | 5 24 | sylanb | ⊢ ( ( ¬ 𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 26 | 4 25 | pm2.61ian | ⊢ ( 𝐶 ≠ ∅ → ( ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |