This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show without using the axiom of replacement that the restriction of the well-ordered recursion generator to a predecessor class is a set. (Contributed by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wfrfun.1 | ⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| Assertion | wfrresex | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfrfun.1 | ⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 2 | wefr | ⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 ) |
| 4 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 5 | sopo | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑅 We 𝐴 → 𝑅 Po 𝐴 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 ) |
| 8 | simpr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 ) | |
| 9 | 3 7 8 | 3jca | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
| 10 | df-wrecs | ⊢ wrecs ( 𝑅 , 𝐴 , 𝐺 ) = frecs ( 𝑅 , 𝐴 , ( 𝐺 ∘ 2nd ) ) | |
| 11 | 1 10 | eqtri | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , ( 𝐺 ∘ 2nd ) ) |
| 12 | 11 | fprresex | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) |
| 13 | 9 12 | sylan | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) |