This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Ordered Induction Schema. If all elements less than a given set x of the well-ordered class A have a property (induction hypothesis), then all elements of A have that property. (Contributed by Scott Fenton, 29-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wfis.1 | ⊢ 𝑅 We 𝐴 | |
| wfis.2 | ⊢ 𝑅 Se 𝐴 | ||
| wfis.3 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) | ||
| Assertion | wfis | ⊢ ( 𝑦 ∈ 𝐴 → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfis.1 | ⊢ 𝑅 We 𝐴 | |
| 2 | wfis.2 | ⊢ 𝑅 Se 𝐴 | |
| 3 | wfis.3 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) | |
| 4 | 3 | wfisg | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| 5 | 1 2 4 | mp2an | ⊢ ∀ 𝑦 ∈ 𝐴 𝜑 |
| 6 | 5 | rspec | ⊢ ( 𝑦 ∈ 𝐴 → 𝜑 ) |