This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015) Proof was revised to accommodate a possible future version of df-tru . (Revised by David A. Wheeler, 8-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uunT1.1 | ⊢ ( ( ⊤ ∧ 𝜑 ) → 𝜓 ) | |
| Assertion | uunT1 | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uunT1.1 | ⊢ ( ( ⊤ ∧ 𝜑 ) → 𝜓 ) | |
| 2 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ ¬ 𝜑 ) ) | |
| 3 | tru | ⊢ ⊤ | |
| 4 | biid | ⊢ ( 𝜑 ↔ 𝜑 ) | |
| 5 | 3 4 | 2th | ⊢ ( ⊤ ↔ ( 𝜑 ↔ 𝜑 ) ) |
| 6 | exmid | ⊢ ( 𝜑 ∨ ¬ 𝜑 ) | |
| 7 | 6 | a1i | ⊢ ( ( 𝜑 ↔ 𝜑 ) → ( 𝜑 ∨ ¬ 𝜑 ) ) |
| 8 | biidd | ⊢ ( ( 𝜑 ∨ ¬ 𝜑 ) → ( 𝜑 ↔ 𝜑 ) ) | |
| 9 | 7 8 | impbii | ⊢ ( ( 𝜑 ↔ 𝜑 ) ↔ ( 𝜑 ∨ ¬ 𝜑 ) ) |
| 10 | 5 9 | bitri | ⊢ ( ⊤ ↔ ( 𝜑 ∨ ¬ 𝜑 ) ) |
| 11 | 2 10 | sylibr | ⊢ ( 𝜑 → ⊤ ) |
| 12 | 11 1 | mpancom | ⊢ ( 𝜑 → 𝜓 ) |