This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ), the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020) (Proof shortened by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uspgrloopvtx.g | ⊢ 𝐺 = 〈 𝑉 , { 〈 𝐴 , { 𝑁 } 〉 } 〉 | |
| Assertion | uspgrloopnb0 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrloopvtx.g | ⊢ 𝐺 = 〈 𝑉 , { 〈 𝐴 , { 𝑁 } 〉 } 〉 | |
| 2 | 1 | uspgrloopvtx | ⊢ ( 𝑉 ∈ 𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 4 | simp2 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → 𝐴 ∈ 𝑋 ) | |
| 5 | simp3 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) | |
| 6 | 1 | uspgrloopiedg | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 8 | 3 4 5 7 | 1loopgrnb0 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |