This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected hypergraphs
ushgrf
Metamath Proof Explorer
Description: The edge function of an undirected simple hypergraph is a one-to-one
function into the power set of the set of vertices. (Contributed by AV , 9-Oct-2020)
Ref
Expression
Hypotheses
uhgrf.v
⊢ V = Vtx ⁡ G
uhgrf.e
⊢ E = iEdg ⁡ G
Assertion
ushgrf
⊢ G ∈ USHGraph → E : dom ⁡ E ⟶ 1-1 𝒫 V ∖ ∅
Proof
Step
Hyp
Ref
Expression
1
uhgrf.v
⊢ V = Vtx ⁡ G
2
uhgrf.e
⊢ E = iEdg ⁡ G
3
1 2
isushgr
⊢ G ∈ USHGraph → G ∈ USHGraph ↔ E : dom ⁡ E ⟶ 1-1 𝒫 V ∖ ∅
4
3
ibi
⊢ G ∈ USHGraph → E : dom ⁡ E ⟶ 1-1 𝒫 V ∖ ∅