This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph represented by an ordered pair. (Contributed by AV, 23-Oct-2020) (Proof shortened by AV, 30-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgrop | ⊢ ( 𝐺 ∈ USGraph → 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | usgrfs | ⊢ ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 4 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 5 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 6 | 4 5 | pm3.2i | ⊢ ( ( Vtx ‘ 𝐺 ) ∈ V ∧ ( iEdg ‘ 𝐺 ) ∈ V ) |
| 7 | isusgrop | ⊢ ( ( ( Vtx ‘ 𝐺 ) ∈ V ∧ ( iEdg ‘ 𝐺 ) ∈ V ) → ( 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) | |
| 8 | 6 7 | mp1i | ⊢ ( 𝐺 ∈ USGraph → ( 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 9 | 3 8 | mpbird | ⊢ ( 𝐺 ∈ USGraph → 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ USGraph ) |