This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unixp0 | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ∪ ( 𝐴 × 𝐵 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ∪ ( 𝐴 × 𝐵 ) = ∪ ∅ ) | |
| 2 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 3 | 1 2 | eqtrdi | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ∪ ( 𝐴 × 𝐵 ) = ∅ ) |
| 4 | n0 | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) ) | |
| 5 | elxp3 | ⊢ ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 = 𝑧 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) | |
| 6 | elssuni | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ⊆ ∪ ( 𝐴 × 𝐵 ) ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | opnzi | ⊢ 〈 𝑥 , 𝑦 〉 ≠ ∅ |
| 10 | ssn0 | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ⊆ ∪ ( 𝐴 × 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ≠ ∅ ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) | |
| 11 | 6 9 10 | sylancl | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 12 | 11 | adantl | ⊢ ( ( 〈 𝑥 , 𝑦 〉 = 𝑧 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 13 | 12 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 = 𝑧 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 14 | 5 13 | sylbi | ⊢ ( 𝑧 ∈ ( 𝐴 × 𝐵 ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 16 | 4 15 | sylbi | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 17 | 16 | necon4i | ⊢ ( ∪ ( 𝐴 × 𝐵 ) = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 18 | 3 17 | impbii | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ∪ ( 𝐴 × 𝐵 ) = ∅ ) |