This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a collection of open sets of a metric space is open. Theorem T2 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | unimopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) |