This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A spanning subgraph of a multigraph represented by an ordered pair is a multigraph. (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspanop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrspanop.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | umgrspanop | ⊢ ( 𝐺 ∈ UMGraph → 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspanop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrspanop.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | vex | ⊢ 𝑔 ∈ V | |
| 4 | 3 | a1i | ⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = ( 𝐸 ↾ 𝐴 ) ) ) → 𝑔 ∈ V ) |
| 5 | simprl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = ( 𝐸 ↾ 𝐴 ) ) ) → ( Vtx ‘ 𝑔 ) = 𝑉 ) | |
| 6 | simprr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = ( 𝐸 ↾ 𝐴 ) ) ) → ( iEdg ‘ 𝑔 ) = ( 𝐸 ↾ 𝐴 ) ) | |
| 7 | simpl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = ( 𝐸 ↾ 𝐴 ) ) ) → 𝐺 ∈ UMGraph ) | |
| 8 | 1 2 4 5 6 7 | umgrspan | ⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = ( 𝐸 ↾ 𝐴 ) ) ) → 𝑔 ∈ UMGraph ) |
| 9 | 8 | ex | ⊢ ( 𝐺 ∈ UMGraph → ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = ( 𝐸 ↾ 𝐴 ) ) → 𝑔 ∈ UMGraph ) ) |
| 10 | 9 | alrimiv | ⊢ ( 𝐺 ∈ UMGraph → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = ( 𝐸 ↾ 𝐴 ) ) → 𝑔 ∈ UMGraph ) ) |
| 11 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 12 | 11 | a1i | ⊢ ( 𝐺 ∈ UMGraph → 𝑉 ∈ V ) |
| 13 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 14 | 13 | resex | ⊢ ( 𝐸 ↾ 𝐴 ) ∈ V |
| 15 | 14 | a1i | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐸 ↾ 𝐴 ) ∈ V ) |
| 16 | 10 12 15 | gropeld | ⊢ ( 𝐺 ∈ UMGraph → 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ UMGraph ) |