This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | umgr0e.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| umgr0e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ∅ ) | ||
| Assertion | umgr0e | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr0e.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 2 | umgr0e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ∅ ) | |
| 3 | 2 | f10d | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 4 | f1f | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 6 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 8 | 6 7 | isumgr | ⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ UMGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → ( 𝐺 ∈ UMGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 10 | 5 9 | mpbird | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) |