This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | umgr0e.g | |- ( ph -> G e. W ) |
|
| umgr0e.e | |- ( ph -> ( iEdg ` G ) = (/) ) |
||
| Assertion | umgr0e | |- ( ph -> G e. UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr0e.g | |- ( ph -> G e. W ) |
|
| 2 | umgr0e.e | |- ( ph -> ( iEdg ` G ) = (/) ) |
|
| 3 | 2 | f10d | |- ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
| 4 | f1f | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
|
| 5 | 3 4 | syl | |- ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
| 6 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 7 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 8 | 6 7 | isumgr | |- ( G e. W -> ( G e. UMGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 9 | 1 8 | syl | |- ( ph -> ( G e. UMGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 10 | 5 9 | mpbird | |- ( ph -> G e. UMGraph ) |