This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cartesian product of two elements of a transitive Tarski class is an element of the class. JFM CLASSES2 th. 67 (partly). (Contributed by FL, 15-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskxp | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ( 𝐴 × 𝐵 ) ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | ⊢ ( 𝐴 ∈ 𝑇 → 𝑇 ≠ ∅ ) | |
| 2 | tskwun | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → 𝑇 ∈ WUni ) | |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑇 ≠ ∅ ) → 𝑇 ∈ WUni ) |
| 4 | 1 3 | sylan2 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ WUni ) |
| 5 | 4 | 3adant3 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 𝑇 ∈ WUni ) |
| 6 | simp2 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 𝐴 ∈ 𝑇 ) | |
| 7 | simp3 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 𝐵 ∈ 𝑇 ) | |
| 8 | 5 6 7 | wunxp | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ( 𝐴 × 𝐵 ) ∈ 𝑇 ) |