This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskin | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 2 | tskss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑇 ) | |
| 3 | 1 2 | mp3an3 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑇 ) |