This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of toponcom . (Contributed by BJ, 5-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | toponcomb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponcom | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 2 | 1 | ex | ⊢ ( 𝐾 ∈ Top → ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) ) |
| 4 | toponcom | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 5 | 4 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ) ) |
| 7 | 3 6 | impbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) ) |