This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifid | ⊢ ( 𝐴 △ 𝐴 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symdif | ⊢ ( 𝐴 △ 𝐴 ) = ( ( 𝐴 ∖ 𝐴 ) ∪ ( 𝐴 ∖ 𝐴 ) ) | |
| 2 | difid | ⊢ ( 𝐴 ∖ 𝐴 ) = ∅ | |
| 3 | 2 2 | uneq12i | ⊢ ( ( 𝐴 ∖ 𝐴 ) ∪ ( 𝐴 ∖ 𝐴 ) ) = ( ∅ ∪ ∅ ) |
| 4 | un0 | ⊢ ( ∅ ∪ ∅ ) = ∅ | |
| 5 | 1 3 4 | 3eqtri | ⊢ ( 𝐴 △ 𝐴 ) = ∅ |