This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 △ 𝐴 ) = ( 𝐶 △ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symdifeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 △ 𝐶 ) = ( 𝐵 △ 𝐶 ) ) | |
| 2 | symdifcom | ⊢ ( 𝐶 △ 𝐴 ) = ( 𝐴 △ 𝐶 ) | |
| 3 | symdifcom | ⊢ ( 𝐶 △ 𝐵 ) = ( 𝐵 △ 𝐶 ) | |
| 4 | 1 2 3 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 △ 𝐴 ) = ( 𝐶 △ 𝐵 ) ) |