This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylancb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| sylancb.2 | ⊢ ( 𝜑 ↔ 𝜒 ) | ||
| sylancb.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | sylancb | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylancb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | sylancb.2 | ⊢ ( 𝜑 ↔ 𝜒 ) | |
| 3 | sylancb.3 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 4 | 1 2 3 | syl2anb | ⊢ ( ( 𝜑 ∧ 𝜑 ) → 𝜃 ) |
| 5 | 4 | anidms | ⊢ ( 𝜑 → 𝜃 ) |