This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sup0riota | ⊢ ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Or 𝐴 ) | |
| 2 | 1 | supval2 | ⊢ ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ) ) |
| 3 | ral0 | ⊢ ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 | |
| 4 | 3 | biantrur | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ) |
| 5 | rex0 | ⊢ ¬ ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 | |
| 6 | imnot | ⊢ ( ¬ ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ¬ 𝑦 𝑅 𝑥 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ¬ 𝑦 𝑅 𝑥 ) |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| 9 | 4 8 | bitr3i | ⊢ ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
| 10 | 9 | a1i | ⊢ ( 𝑅 Or 𝐴 → ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| 11 | 10 | riotabidv | ⊢ ( 𝑅 Or 𝐴 → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
| 12 | 2 11 | eqtrd | ⊢ ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |