This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap subtrahend and result of subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subsub23d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| subsub23d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subsub23d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | subsub23d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsub23d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | subsub23d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subsub23d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | subsub23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |