This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subreci.1 | ⊢ 𝐴 ∈ ℂ | |
| subreci.2 | ⊢ 𝐵 ∈ ℂ | ||
| subreci.3 | ⊢ 𝐴 ≠ 0 | ||
| subreci.4 | ⊢ 𝐵 ≠ 0 | ||
| Assertion | subreci | ⊢ ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subreci.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | subreci.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | subreci.3 | ⊢ 𝐴 ≠ 0 | |
| 4 | subreci.4 | ⊢ 𝐵 ≠ 0 | |
| 5 | subrec | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) ) | |
| 6 | 1 3 2 4 5 | mp4an | ⊢ ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) |